
高中数学人教A版必修4课时达标检测(二十三)平面向量数量积的坐标表示、模、夹角 Word版含解析.doc
乱了夏末蓝了海|
2023-03-01|
39次下载|
3页|
84.438KB|
5分
高中数学人教A版必修4课时达标检测(二十三)平面向量数量积的坐标表示、模、夹角 Word版含解析.doc
www.ks5u.com
课时达标检测(二十三)平面向量数量积的坐标表示、模、夹角
一、选择题
1.(山东高考)已知向量a=(1,eq \r(3)),b=(3,m),若向量a,b 的夹角为eq \f(π,6),则实数m=( )
A.2eq \r(3) B.eq \r( 3)
C.0D.-eq \r(3)
答案:B
2.已知平面向量a=(2,4),b=(-1,2),若c=a-(a·b)b,则|c|等于( )
A.4eq \r(2) B.2eq \r(5)
C.8 D.8eq \r(2)
答案:D
3.已知向量a=(1,2),b=(2,-3),若向量c满足(c+a)∥b,c⊥(a+b),则c等于( )
A.eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(7,9),\f(7,3))) B.eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,3),-\f(7,9)))
C.eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(7,3),\f(7,9))) D.eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,9),-\f(7,3)))
答案:D
4.(湖北高考)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量 EMBED Equation.DSMT4 在 EMBED Equation.DSMT4 方向上的投影为( )
A.eq \f(3\r(2),2) B.eq \f(3 \r(15),2)
C.-eq \f(3\r(2),2) D.-eq \f(3 \r(15),2)
答案:A
5.已知i与j为互相垂直的单位向量,a=i-2j,b=i+λj,且a与b的夹角为锐角,则实数λ的取值范围是( )
A.(-∞,-2)∪eq \b\lc\(\rc\)(\a\vs4\al\co1(-2,\f(1,2)))
B.eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),+∞))
C.eq \b\lc\(\rc\)(\a\vs4\al\co1(-2,\f(2,3)))∪eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3),+∞))
D.eq \b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(1,2)))
答案:A
二、填空题
6.已知A(1,2),B(3,4),|n|=eq \r(2),则| EMBED Equation.DSMT4 ·n|的最大值为________.
答案:4
7.如图,已知点A(1,1)和单位圆上半部分上的动点B,若 EMBED Equation.DSMT4 ⊥ EMBED Equation.DSMT4 ,则向量 EMBED Equation.DSMT4 的坐标为________.
答案:eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(2),2),\f(\r(2),2)))
8.已知a=(λ,2λ),b=(3λ,2),若a与b的夹角为锐角,则λ的取值范围是________.
答案:eq \b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(4,3)))∪eq \b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,3)))∪eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),+∞))
三、解答题
9.已知a,b,c是同一平面内的三个向量,其中a=(1,2).
(1)若|c|=2eq \r(5),且c∥a,求c的坐标;
(2)若|b|=eq \f(\r(5),2),且a+2b与2a-b垂直,求a与b的夹角θ.
解:(1)设c=(x,y),∵|c|=2eq \r(5),∴eq \r(x2+y2)=2eq \r(5),
∴x2+y2=20.
由c∥a和|c|=2eq \r(5),
可得eq \b\lc\{\rc\ (\a\vs4\al\co1(1·y-2·x=0,,x2+y2=20,))解得eq \b\lc\{\rc\ (\a\vs4\al\co1(x=2,,y=4,))或eq \b\lc\{\rc\ (\a\vs4\al\co1(x=-2,,y=-4.))
故c=(2,4)或c=(-2,-4).
(2)∵(a+2b)⊥(2a-b),∴(a+2b)·(2a-b)=0,
即2a2+3a·b-2b2=0,
∴2×5+3a·b-2×eq \f(5,4)=0,整理得a·b=-eq \f(5,2),
∴cos θ=eq \f(a·b,|a||b|)=-1.
又θ∈[0,π],∴θ=π.
10.平面内有向量 EMBED Equation.DSMT4 =(1,7), EMBED Equation.DSMT4 =(5,1), EMBED Equation.DSMT4 =(2,1),点M为直线OP上的一动点.
(1)当 EMBED Equation.DSMT4 · EMBED Equation.DSMT4 取最小值时,求 EMBED Equation.DSMT4 的坐标;
(2)在(1)的条件下,求cos∠AMB的值.
解:(1)设 EMBED Equation.DSMT4 =(x,y),∵点M在直线OP上,
∴向量 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 共线,又 EMBED Equation.DSMT4 =(2,1).
∴x×1-y×2=0,即x=2y.
∴ EMBED Equation.DSMT4 =(2y,y).又 EMBED Equation.DSMT4 = EMBED Equation.DSMT4 - EMBED Equation.DSMT4 , EMBED Equation.DSMT4 =(1,7),
∴ EMBED Equation.DSMT4 =(1-2y,7-y).
同理 EMBED Equation.DSMT4 = EMBED Equation.DSMT4 - EMBED Equation.DSMT4 =(5-2y,1-y).
于是 EMBED Equation.DSMT4 · EMBED Equation.DSMT4 =(1-2y)(5-2y)+(7-y)(1-y)=5y2-20y+12.
可知当y=eq \f(20,2×5)=2时, EMBED Equation.DSMT4 · EMBED Equation.DSMT4 有最小值-8,此时 EMBED Equation.DSMT4 =(4,2).
(2)当 EMBED Equation.DSMT4 =(4,2),即y=2时,
有 EMBED Equation.DSMT4 =(-3,5), EMBED Equation.DSMT4 =(1,-1),
| EMBED Equation.DSMT4 |=eq \r(34),| EMBED Equation.DSMT4 |=eq \r(2),
EMBED Equation.DSMT4 · EMBED Equation.DSMT4 =(-3)×1+5×(-1)=-8.
cos∠AMB=eq \f( EMBED Equation.DSMT4 · EMBED Equation.DSMT4 ,| EMBED Equation.DSMT4 || EMBED Equation.DSMT4 |)=eq \f(-8,\r(34)×\r(2))=-eq \f(4\r(17),17).
INCLUDEPICTURE "能力提升彩.TIF" \* MERGEFORMAT
11.设平面向量a=(cos α,sin α)(0≤α<2π),b=eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2),\f(\r(3),2))),且a与b不共线.
(1)求证:向量a+b与a-b垂直;
(2)若两个向量eq \r(3)a+b与a-eq \r(3)b的模相等,求角α.
解:(1)证明:由题意知,
a+b=eq \b\lc\(\rc\)(\a\vs4\al\co1(cos α-\f(1,2),sin α+\f(\r(3),2))),
a-b=eq \b\lc\(\rc\)(\a\vs4\al\co1(cos α+\f(1,2),sin α-\f(\r(3),2))),
∵(a+b)·(a-b)=cos2α-eq \f(1,4)+sin2α-eq \f(3,4)=0,
∴(a+b)⊥(a-b).
(2)|a|=1,|b|=1,由题意知(eq \r(3)a+b)2=(a-eq \r(3)b)2,化简得a·b=0,∴-eq \f(1,2)cos α+eq \f(\r(3),2)sin α=0,
∴tan α=eq \f(\r(3),3),
又0≤α<2π,∴α=eq \f(π,6)或α=eq \f(7π,6).
www.ks5u.com
课时达标检测(二十三)平面向量数量积的坐标表示、模、夹角
一、选择题
1.(山东高考)已知向量a=(1,eq \r(3)),b=(3,m),若向量a,b 的夹角为eq \f(π,6),则实数m=( )
A.2eq \r(3) B.eq \r( 3)
C.0D.-eq \r(3)
答案:B
2.已知平面向量a=(2,4),b=(-1,2),若c=a-(a·b)b,则|c|等于( )
A.4eq \r(2) B.2eq \r(5)
C.8 D.8eq \r(2)
答案:D
3.已知向量a=(1,2),b=(2,-3),若向量c满足(c+a)∥b,c⊥(a+b),则c等于( )
A.eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(7,9),\f(7,3))) B.eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,3),-\f(7,9)))
C.eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(7,3),\f(7,9))) D.eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,9),-\f(7,3)))
答案:D
4.(湖北高考)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量 EMBED Equation.DSMT4 在 EMBED Equation.DSMT4 方向上的投影为( )
A.eq \f(3\r(2),2) B.eq \f(3 \r(15),2)
C.-eq \f(3\r(2),2) D.-eq \f(3 \r(15),2)
答案:A
5.已知i与j为互相垂直的单位向量,a=i-2j,b=i+λj,且a与b的夹角为锐角,则实数λ的取值范围是( )
A.(-∞,-2)∪eq \b\lc\(\rc\)(\a\vs4\al\co1(-2,\f(1,2)))
B.eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),+∞))
C.eq \b\lc\(\rc\)(\a\vs4\al\co1(-2,\f(2,3)))∪eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3),+∞))
D.eq \b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(1,2)))
答案:A
二、填空题
6.已知A(1,2),B(3,4),|n|=eq \r(2),则| EMBED Equation.DSMT4 ·n|的最大值为________.
答案:4
7.如图,已知点A(1,1)和单位圆上半部分上的动点B,若 EMBED Equation.DSMT4 ⊥ EMBED Equation.DSMT4 ,则向量 EMBED Equation.DSMT4 的坐标为________.
答案:eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(2),2),\f(\r(2),2)))
8.已知a=(λ,2λ),b=(3λ,2),若a与b的夹角为锐角,则λ的取值范围是________.
答案:eq \b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(4,3)))∪eq \b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,3)))∪eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),+∞))
三、解答题
9.已知a,b,c是同一平面内的三个向量,其中a=(1,2).
(1)若|c|=2eq \r(5),且c∥a,求c的坐标;
(2)若|b|=eq \f(\r(5),2),且a+2b与2a-b垂直,求a与b的夹角θ.
解:(1)设c=(x,y),∵|c|=2eq \r(5),∴eq \r(x2+y2)=2eq \r(5),
∴x2+y2=20.
由c∥a和|c|=2eq \r(5),
可得eq \b\lc\{\rc\ (\a\vs4\al\co1(1·y-2·x=0,,x2+y2=20,))解得eq \b\lc\{\rc\ (\a\vs4\al\co1(x=2,,y=4,))或eq \b\lc\{\rc\ (\a\vs4\al\co1(x=-2,,y=-4.))
故c=(2,4)或c=(-2,-4).
(2)∵(a+2b)⊥(2a-b),∴(a+2b)·(2a-b)=0,
即2a2+3a·b-2b2=0,
∴2×5+3a·b-2×eq \f(5,4)=0,整理得a·b=-eq \f(5,2),
∴cos θ=eq \f(a·b,|a||b|)=-1.
又θ∈[0,π],∴θ=π.
10.平面内有向量 EMBED Equation.DSMT4 =(1,7), EMBED Equation.DSMT4 =(5,1), EMBED Equation.DSMT4 =(2,1),点M为直线OP上的一动点.
(1)当 EMBED Equation.DSMT4 · EMBED Equation.DSMT4 取最小值时,求 EMBED Equation.DSMT4 的坐标;
(2)在(1)的条件下,求cos∠AMB的值.
解:(1)设 EMBED Equation.DSMT4 =(x,y),∵点M在直线OP上,
∴向量 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 共线,又 EMBED Equation.DSMT4 =(2,1).
∴x×1-y×2=0,即x=2y.
∴ EMBED Equation.DSMT4 =(2y,y).又 EMBED Equation.DSMT4 = EMBED Equation.DSMT4 - EMBED Equation.DSMT4 , EMBED Equation.DSMT4 =(1,7),
∴ EMBED Equation.DSMT4 =(1-2y,7-y).
同理 EMBED Equation.DSMT4 = EMBED Equation.DSMT4 - EMBED Equation.DSMT4 =(5-2y,1-y).
于是 EMBED Equation.DSMT4 · EMBED Equation.DSMT4 =(1-2y)(5-2y)+(7-y)(1-y)=5y2-20y+12.
可知当y=eq \f(20,2×5)=2时, EMBED Equation.DSMT4 · EMBED Equation.DSMT4 有最小值-8,此时 EMBED Equation.DSMT4 =(4,2).
(2)当 EMBED Equation.DSMT4 =(4,2),即y=2时,
有 EMBED Equation.DSMT4 =(-3,5), EMBED Equation.DSMT4 =(1,-1),
| EMBED Equation.DSMT4 |=eq \r(34),| EMBED Equation.DSMT4 |=eq \r(2),
EMBED Equation.DSMT4 · EMBED Equation.DSMT4 =(-3)×1+5×(-1)=-8.
cos∠AMB=eq \f( EMBED Equation.DSMT4 · EMBED Equation.DSMT4 ,| EMBED Equation.DSMT4 || EMBED Equation.DSMT4 |)=eq \f(-8,\r(34)×\r(2))=-eq \f(4\r(17),17).
INCLUDEPICTURE "能力提升彩.TIF" \* MERGEFORMAT
11.设平面向量a=(cos α,sin α)(0≤α<2π),b=eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2),\f(\r(3),2))),且a与b不共线.
(1)求证:向量a+b与a-b垂直;
(2)若两个向量eq \r(3)a+b与a-eq \r(3)b的模相等,求角α.
解:(1)证明:由题意知,
a+b=eq \b\lc\(\rc\)(\a\vs4\al\co1(cos α-\f(1,2),sin α+\f(\r(3),2))),
a-b=eq \b\lc\(\rc\)(\a\vs4\al\co1(cos α+\f(1,2),sin α-\f(\r(3),2))),
∵(a+b)·(a-b)=cos2α-eq \f(1,4)+sin2α-eq \f(3,4)=0,
∴(a+b)⊥(a-b).
(2)|a|=1,|b|=1,由题意知(eq \r(3)a+b)2=(a-eq \r(3)b)2,化简得a·b=0,∴-eq \f(1,2)cos α+eq \f(\r(3),2)sin α=0,
∴tan α=eq \f(\r(3),3),
又0≤α<2π,∴α=eq \f(π,6)或α=eq \f(7π,6).