活到老,学到老

高中人教A版数学必修4:第8课时 诱导公式五、六 Word版含解析.doc

惜君嫣云| 2023-03-21| 55次下载| 4页| 529.867KB| 5分
高中人教A版数学必修4:第8课时 诱导公式五、六 Word版含解析.doc
第8课时 诱导公式五、六
INCLUDEPICTURE"语言.EPS"
      课时目标1.理解公式五、六的推导.
2.运用所学的四组公式正确进行求值化简、证明.
INCLUDEPICTURE"预习.EPS"
  识记强化 公式五:sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=cosα,coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=sinα;
公式六:sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα,coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα.
INCLUDEPICTURE"预习.EPS"
  课时作业
一、选择题
1.已知cosx=eq \f(1,5),且x是第四象限角,那么coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-x))=(  )
A.eq \f(\r(5),5)  B.-eq \f(1,5)
C.-eq \f(4,5) D.eq \f(2 \r(6),5)
答案:D
解析:∵x是第四象限角,cosx=eq \f(1,5),∴sinx=-eq \r(1-cos2x)=-eq \f(2 \r(6),5).∴coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-x))=-sinx=eq \f(2 \r(6),5).
2.已知sin40°=a,则cos50°等于(  )
A.±a B.-a
C.a D.eq \r(1-a2)
答案:C
3.下面诱导公式使用正确的是(  )
A.sineq \b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(π,2)))=cosθ
B.coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))=-sinθ
C.sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))=-cosθ
D.coseq \b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(π,2)))=-sinθ
答案:C
4.若sin(eq \f(π,2)+α)+coseq \b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))=eq \f(7,5),则sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))+coseq \b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))等于(  )
A.-eq \f(3,5) B.eq \f(4,5)
C.-eq \f(7,5) D.eq \f(7,5)
答案:C
解析:由已知得cosα+sinα=eq \f(7,5),∴sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))+coseq \b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))=-cosα-sinα=-eq \f(7,5).
5.若eq \f(sinθ+cosθ,sinθ-cosθ)=2,则sin(θ-5π)sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))等于(  )
A.eq \f(4,3) B.±eq \f(3,10)
C.eq \f(3,10) D.-eq \f(3,10)
答案:C
解析:由eq \f(sinθ+cosθ,sinθ-cosθ)=2,可得tanθ=3,∴sin(θ-5π)sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))=(-sinθ)(-cosθ)
=eq \f(sinθcosθ,sin2θ+cos2θ)
=eq \f(tanθ,tan2θ+1)
=eq \f(3,10).
6.已知coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+φ))=eq \f(\r(3),2),且|φ|A.-eq \f(\r(3),3) B.eq \f(\r(3),3)
C.-eq \r(3) D.eq \r(3)
答案:C
解析:由coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+φ))=-sinφ=eq \f(\r(3),2),得sinφ=-eq \f(\r(3),2).又|φ|二、填空题
7.sin(-1200°)cos1290°+cos(-1020°)sin(-1050°)+tan945°=________.
答案:2
解析:原式=-sin1200°cos(210°+3×360°)-cos1020°sin1050°+tan(225°+2×360°)
=-sin(120°+3×360°)cos210°-cos(-60°+3×360°)
sin(-30°+3×360°)+tan225°
=-sin(180°-60°)cos(180°+30°)-cos(-60°)
sin(-30°)+tan(180°+45°)
=-eq \f(\r(3),2)eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(3),2)))-eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))+1=2.
8.已知tan(3π+α)=2,则
eq \f(sinα-3π+cosπ-α+sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))-2cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),-sin-α+cosπ+α)=________.
答案:2
解析:由tan(3π+α)=2,得tanα=2,所以原式=eq \f(-sinα+-cosα+cosα-2-sinα,sinα-cosα)=eq \f(sinα,sinα-cosα)=eq \f(tanα,tanα-1)=eq \f(2,2-1)=2.
9.已知函数f(x)是奇函数,当x<0时,f(x)=x2-2asineq \f(πx,2),若f(3)=6,则a=________.
答案:eq \f(15,2)
解析:f(x)为奇函数,所以f(-3)=-6,即f(-3)=9-2asineq \f(-3π,2)=9+2asineq \f(3π,2)=9-2a=-6,∴a=eq \f(15,2).
三、解答题
10.已知f(α)=eq \f(sinπ-αcos2π-αtan-α+π,-tan-α-πsin-π-α).
(1)化简f(α);
(2)若α是第三象限角,且coseq \b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))=eq \f(1,5),求f(α)的值.
解:(1)f(α)=eq \f(sinαcosα-tanα,tanαsinα)=-cosα.
(2)∵coseq \b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))=-sinα,∴sinα=-eq \f(1,5).
又α是第三象限角,∴cosα=-eq \f(\r(52-12),5)=-eq \f(2\r(6),5),
∴f(α)=eq \f(2\r(6),5).
11.(1)设f(α)
=eq \f(2sinπ+αcosπ-α-cosπ+α,1+sin2α+cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))-sin2\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))),
求feq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(23π,6)))的值.
(2)化简:sineq \b\lc\(\rc\)(\a\vs4\al\co1(nπ+\f(2,3)π))·coseq \b\lc\(\rc\)(\a\vs4\al\co1(nπ+\f(4,3)π))(n∈Z).
解:(1)∵f(α)=eq \f(-2sinα-cosα+cosα,1+sin2α+sinα-cos2α)
=eq \f(2sinαcosα+cosα,2sin2α+sinα)
=eq \f(cosα1+2sinα,sinα1+2sinα)
=eq \f(1,tanα),
∴feq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(23π,6)))=eq \f(1,tan\b\lc\(\rc\)(\a\vs4\al\co1(-\f(23π,6))))=eq \f(1,tan\b\lc\(\rc\)(\a\vs4\al\co1(-4π+\f(π,6))))=eq \f(1,tan\f(π,6))=eq \r(3).
(2)当n=2k(k∈Z)时,
原式=sineq \b\lc\(\rc\)(\a\vs4\al\co1(2kπ+\f(2,3)π))·coseq \b\lc\(\rc\)(\a\vs4\al\co1(2kπ+\f(4,3)π))
=sineq \f(2,3)π·coseq \f(4,3)π
=sineq \f(π,3)·eq \b\lc\(\rc\)(\a\vs4\al\co1(-cos\f(π,3)))
=eq \f(\r(3),2)×eq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))
=-eq \f(\r(3),4).
当n=2k+1(k∈Z)时,
原式=sineq \b\lc\[\rc\](\a\vs4\al\co1(2k+1π+\f(2,3)π))·
coseq \b\lc\[\rc\](\a\vs4\al\co1(2k+1π+\f(4,3)π))
=sineq \b\lc\(\rc\)(\a\vs4\al\co1(π+\f(2,3)π))·coseq \b\lc\(\rc\)(\a\vs4\al\co1(π+\f(4,3)π))
=-sineq \f(2,3)π·coseq \f(π,3)
=-sineq \f(π,3)·coseq \f(π,3)
=-eq \f(\r(3),2)×eq \f(1,2)
=-eq \f(\r(3),4).
综上,原式=-eq \f(\r(3),4).
INCLUDEPICTURE"预习.EPS"
  能力提升
12.若f(sinx)=3-cos2x,则f(cosx)等于(  )
A.3-cos2x B.3-sin2x
C.3+cos2x D.3+sin2x
答案:C
解析:f(cosx)=feq \b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-x))))
=3-cos2eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-x))=3-cos(π-2x)=3+cos2x.
13.已知A、B、C为△ABC的三个内角,求证:coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-\f(A,2)))=sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+\f(A,2)))=coseq \f(π,4)-eq \f(B+C,2).
证明:coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-\f(A,2)))=sineq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-\f(A,2)))))
=sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+\f(A,2))).
又因为在△ABC中,A+B+C=π,
所以eq \f(A,2)=eq \f(π,2)-eq \f(B+C,2),所以eq \f(B+C,2)=eq \f(π,2)-eq \f(A,2).
所以coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-\f(B+C,2)))=coseq \b\lc\[\rc\](\a\vs4\al\co1(\f(π,4)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-\f(A,2)))))
=coseq \b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,4)+\f(A,2)))=coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-\f(A,2))).
所以coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-\f(A,2)))=sineq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+\f(A,2)))=coseq \b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-\f(B+C,2))).